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Solution of a number of problems ofthe hydromechanics of macrocracks in a thin 
layer during the filtration of a homogeneous liquid & presented. A method of 
solving these problems using the trigonometric series is given. 

A system of functional equations for the filtration flow in a thin layer contain- 

ing macrocracks was obtained in [l, 2% The basic hypothesis used in fl. 21 was, 
that in sufficiently narrow cracks the filtration flow is laminar and obeys the 

Darcy law. From the assumption of conservation of flow near the macrocrack 
element, the boundary condition for the velocity potential in and outside the 
cracks was found [l$ In constructing the velocity potential a major role is played 
by complex integrals with the Cauchy or Hilbert type kernels. The simplest con- 
verse problems were studied and it was shown [I, 21 that, if the discharge func- 

tion o (s) is prescribed, the cracks with either blunt or sharp ends exist. 
Paper [3] dealt with the direct problem for the case when the crack profile 

with a rectilinear axis is described by an analytic function of the form 8 (s) = 

= 1/i - s/P (s) (-i < S d i)t where the rational function p (s) > 0. The solu- 
tion p] of the problem on perturbation of a filtration flow by a single crack in a 

thin layer was found to diverge for the sharp-ended crack. This points to the inef- 
ficiency of the method given in p]. Below we obtain a general solution of the 

direct problem and show, that this solution is also valid in the case when the cracks 

are sharp-ended. A generalization of the fundamental boundary condition [1. 21 
is also given. This generalization makes possible the investigation of hydrome- 
chanical interaction between the deforming cracks and the neighboring unstable 

filtration flow of a homogeneous liquid in a thin layer. 

1. Boundary condition for the flltrrticn flow at the crack ad- 
go,. The Byrtem of functicnrl equrticnr of flow. Figure lb gives a 
schematic representation of a transverse cross section of the macrocrack r in a thin 

oblique layer [l]. Generally speaking the crack axis is curved; below however we con- 
sider the case of a rectilinear crack I’ E AB. The volume V of the element 
MM’ikf,M,’ (Fig-la) of the crack AB consists of the volume v,, of cavities filled 

with the homogeneous liquid of the layer and the volume v, of elastic inclusions L 

such as e. g. gaseous bubbles formed under the reduced pressure and moving freely in 

the crack during the filtration process. The position of the transverse section MM’ on 

the axis of the crack r is defined by the real parameter S. The volume v = vr, f v, 
may change its value for two reasons: 

1) transverse sagging may take place, i. e: a narrowing (or widening) of the crack, or 
2) compression (or expansion) of the elastic inclusions may take place depending on 
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the change in the hydromechanical pressure p = p (S, t). 
The nansverse narrowing (sagging) of the crack r in the cross section ~11 (s) is deter- 

mined by the expression Ah = + BohoAp 

(AV = AsAh) (I.11 

where ho = h, (s) is the initial width of the crack and @a is the volume compressibility 

coefficient (the coefficient of “elastic sagging” of the crack in the cross section hf (s)). 
Relation (1.1) is the initial relation 
in the theory of a beam supported 

on an elastic foundation [4]. The 
(sufficiently narrow) cavity represen- 

ted by the crack r in the thin layer 
,!? is modelled by the elastic beam 
which undergoes a transverse defor- 
mation depending on the external 
hydromechanical pressure 

P = P (& 4 

(t is the time parameter). 

# The change in the volume V, of 
Q M(S) elastic inclusions L, in the element 

Fig. 1 MM’M,M, is given by 

AV, = - mV&,Ap = - mh&A.sAp (1.2) 

where m is the proportion of the volume of the empty element MM’M,M,’ contain- 

ing the elastic inclusions L; 6, is the volume compressibility coefficient of the elastic 

inclusions and h = h (s, t) is the crack width at the cross section M (s). The quantity 
m is analogous to porosity in the usual sense of the word, but has a more general mean- 
ing. It is therefore more correct to assign to m [5, 61 the name of crack vacuity at the 

cross section M (s). 
Relations (1. l), (1.2) together with the expression AV, = AV - AV yield -- 

AI’,, = (B&a + m&h) APAS (1.3) 

The volume compressibility coefficient-B of the cracks is given by 

p - *vo 
*PV 

(V = hAs, ho = h (s, 0)) (1.4) 

Using (1.4) we obtain the basic system of the functional equations for a filtration flow 
in a thin oblique layer @J in the form 

Here 5 = c (s) is a complex function of the real argument s defining the point M (ij 
on the axis of the crack r; F ( 5) is the complex potential of the external flow at the 
point 5; 0 (S, t) is the discharge function of the liquid contained in the layer measured 
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across the cross section M(the discharge is relative to the unit capacity of the layer), 
6 = (k,/k) h is the effective crack width at the point w k,, k are the permeabili- 

ties of the crack filler and of the porous medium respectively and p is the viscosity of 
the liquid in the layer. The dimension of each quantity appearing in (1.5) can be found 

by the methods used in [ 1J. 
For a rectilinear crack we have c = z,,s (z, = bei@, p = 0 is the polar angle, 

-1 & s < 1). III the case of a progressive flow we have F (I;) = Vc where v is 

the flow velocity alc$g the real axis. 
The element MM’M,M,’ of the crack r represents a narrow gap between two 

cylindrical walls MM, and jWM,’ the distance between which varies within narrow 
limits. Therefore it can be stated with sufficient accuracy that the longitudinal perme- 

ability of such a gap has, in the case of a laminar viscous flow, an upper limit determined 
by the Boussinesq formula [5] for a plane gap 

max k, = Y,,ha (0 < k, < max h) (1.6) 

The system (1.5) can be reduced to its dimensionless form with the help of such para- 

meters as the time T , the pressurep, , the axial crack length 2b, the greatest width of 

the crack or its width H in the middle cross section,and of the following obvious relations 

t=Tz, q=-+ppP, p=poP, co=-+p,n, h=Hf, h,=Hf, 

ho = Hf, 

P = P(s, z), D = i-2 (s, g, P, = P (s, m),. sz, = !a (s, 00) (1.7) 

f = f (s, ~1, fo = f b, O), ft,, = f (s, m), F = P - Pm, G = Q - Q2, 

The last line in (i. 7) is equivalent to the boundary conditions for the functions h (s, T) 
and o (s, T). Using the relations (1.7) to trasform (1.5) we obtain the following system 

of functional equations 

- (4 + fo) $ = h -g 

1 

P+vss& _ s Q (a* t) * 
b-S 

-1 
(1.8) 

In the steady state problem we have - P (s, oo) = P, = cod (7) and Eqs. (1. 8) 
then yield 

apoo 
Xf,sx = hQ, 

Eliminating the function P, (s) from (1.9) with the accuracy allowed by the notation 
used, we obtain an integrodifferential equation already found in [l] 
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(1.10) 

In the direct problem a specified expression for 8, (3) is used to obtain the crack pro- 

file determined by the function fm (s). In the converse problem the function f, (s) is 

specified and the discharge function 61, (s) is to be determined. Certain additional 
smoothness requirements imposed on the functions f, (s) and 8, (s) reduce (1.10) to the , 

Prandtl equation [7-lo]. The solution of the converse problem however, obtained in this 

manner p] has a number of substantial shortcomings. It loses its meaning when the crack 
is sharp-ended and this is obvious from the fact that certain improper integrals diverge. 

For example, for the sharply ending cracks the expression for the auxiliary function 9 (s) 
[3] becomes infinite as 1 s 1 -, I . 

2. Solution of the #toady Itate problem on the interaction of 
a macrocrack in a thin layer wfth the neighboring filtration 
flow using trigonometric expan8iong. It can easily be shown that the func- 

tional aasformation [l, 101 
1 

is equivalent to the following system of conjugate transformations 

‘I2 is 

1 
T- sin .yiyzn e dx = ‘=$ ( _-‘2;‘$;; ~ ) (2.2) 

The system (1.9) can be transformed to new arguments 0 and X using the substitutions 

fm = fca (s) = f, (q, P, = P, (s) = P, (e), n, = n, (s) = Q* (0) 
52, (a) = Q, (x), s = sin 8, ci = sin x (2.3) 
(- ‘12 JC < rJ d ‘12 n) (- ‘/a ll< X d ‘la x) 

As the result we obtain 

xf,3 (e) .E$ =m,(e)c0se (--/2n<i3<l/2n) 

P,(e) fvsin8 = (2.4) 

Let the even function Q2, (l3) (--‘/a n < 8 < ‘I2 n) be sufficiently smooth (the 

smoothness of a function is determined by the order r of its highest continuous deriva- 

tive) and represented by a uniformly converging trigonometric series in cosines of odd 
multiples of the argument of the form 

9*(e) =C~,cosne tn =i,3,5,...; --+n~08%@ (2.5) 
WI 

Obviously the function Q,(8) satisfies the boundary condition 
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9,(&l)= Q, (f l/s n) = 0. Substitution of the expansion for Q2, (8) given in 
(2.5) into the integrand in (2.4) makes possible the computation of the latter by inte- 
grating the resulting series term by term. Elementary trigonometric transformations and 

the use of (2.2) together yield the following expression for the, pressure function P, (0) : 

P,(0) = -VYiinB-+~Cc,sinnB 
n = 1, 3, 5; . . . 

(2.6) 
(n) i - 112 n < 6 < r/z II 

Insertion of P, (0) into the first equation of (2.4) now yields 

+ f,$ (cl) = - cos e&c0s ne 
e, ( vc0se +.+-~~c,cos~~ -’ 

ho j 

n = 1, 3, . . . 5; 

- r/s n < 0 < i/s n > (2.7) 

The system (2.5)-(2.7) together with the expression s = sin 8 taken from (2.3) 

represents the required solution of the problem in the parametric form. Here it must be 
remembered that the functional properties of the functions P, (0) (2.6) and l* (0) 

(2. ‘7) depend on the analogous properties of the initial function’ 9, (0) (2.5). 
Keeping the above remark in mind and depending on which of the three functions 

!.& ((I), P, (0) or f, (0) is specified, we define the coeffioients c, (n = 1, 3, 5, . ..) 
from the corresponding expansions (2.5). (2.6) or (2.7) by .familiar methods, e. g. for an 
approximate solution of the problem we use the expansion in the discrete values of the 
argument 6 over the segment - ‘1s rc < 8 < II2 n. We note an elementary case 
analogous to the example given in 13-j. Assume that Cl # 0, cg = c5 = . . . = 0. Then 

the relations (2.5)-(2..7) give 

n, (e) = cl cos 8, P,(e) = - (V + 11~ cl) sin 8, $f(e)= - v +c;2 c1 ~0s e (2.8) 

at the point 8 =O, foe (0) = f, (0) = 1 , and this leads to the following equation 

for c1 : 
Cl = - h+ysX (2.9) 

Using (2.3) we obtain explicit expressions for the functions 

Employing (1.7) we now obtain the solution of the problem in the dimensional quan- 
tities 

h, = H (1 - S)‘/e (2.11) 

2T’bH” 

oco = H3+24kb 
(1 - sy, pm = - $$Zkb s 

x = bs (-i\<s,(l) 

where x represents the abscissa of the point M (s). When x = f b we have dhldx = 
= r 00, therefore the profile of the crack I’ intersects with the axis A B at the right 
angles. In other words, the edges of the crack r = AB are not closea at the end points 
A and B , i. e. the crack ends are not cuspidal. 

Next we consider the problem of existence of the sharp-ended cracks. 
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3. Condition& of axl#tence of ths rhrrp-ended crrcka. The profile 
of the crack r can be obtained near each of its end points A and B in the parametric 

form using a > 0 as the argument, from (2.7) in which the substitution Cl= f (1&Z - 

- CZ) has been made, This yields 

s = +cose, +*3 = - sin a 2 ( - l>‘ie W-1) c, sin na x 
(4 ( 

“,r;;yxj (3.1) 
1 I I*-’ 

X b sin oz + -& 2 (-I)‘/2 @-1) nc, sin m]-’ 
0Q 

If the numerical series El n’ c, converges absolutely for Q, (0) (2.5) for r = 7, 

it also converges absolutely when 1 < r < 6. If in addition 

V +~(-~)l/~~n-l)~zc~~o (3.2) 
(=I 

also holds, the expression (3.1) yields a limiting relation lim f* =f* (9~ ‘/sJ’t) = 0 for 

u + 0. This means that the boundary condition f, (f 1) = 0 (1.7) holds for the 

function foe (s) . 
Three basic types of the crack profile form (Fig. lc) depending on the degree (r$ of 

smoothness of the function f* (3.1) can be recognized : 
1. sharp-ended crack if, j = dh/dx-tqzC)asx+fb, 
2. blunt-ended crack if 3 = &J&C -f =tr 00 as r + f b and 
3. angular crack if j =dh/dx-+E (lE1<co)asx+=i=b. 

The proposed classification is also applicable to the asymmetric cracks: in this case 
however each crack end must be considered independently and matched against one of 
the crack types listed above. 

The form of the crack AB depends on the behavior of the function I.%/& as a --f 0, 
and we have dh H 1 df. -&=fi:---F---- 

b nna da 

Using { 3.2) we obtain from (3.1) the following expansion : 

faE3 = M aZ:w*- [ $2 T-nn% + -g- as c mn6cn - 
00 (n) (n) 

-- ;; &dc,l + 0 (d), M = const, 7, = (-l)'~~("l~ (34 
tn> 

The following theorem holds: 

1) If the equations &#c, = 0 
(n) 

(r = 1. 3, 5) (3.5) 

and the expansion (3.4) are both satisfied, then the crack r is sharp-ended at A and B 
and its form is of the type 1; 

2) if at least one of equations (3.5) does not hold together with the expansion (3.4), 
then the crack is blunt-ended at A and 8 , i.e. the profile of the crack at these points 
is inclined at a right angle to the crack axis, and in this case the form of the crack r is 

of the type 2. 
The proof is obvious and based on considering the order of smallness of the expressions 

(3.3) and (3.4) at a -+ 0. 
The left-hand side of (3.1) is obtained under the assumption that the effective crack 



Hydromechanics of filtration of a homogeneous liquid 489 

width 6 = (k,/kj h is determined by 

6 (max k,lk) h = VI2 (P/k) 

When the permeability k, is expressed in this manner, the possibility of existence of 

cracks of the type 3 characterized by the discharge function Q, (8) in its expanded 
form (2.5) is excluded, i.e. no cracks with angular profiles at the ends A and B exist. 

Apart from the condition f* (& l/s n) = 0 the function f, (2.7) must also satisfy 
the scale condition f, (0) = 1, therefore from (2.7) we obtain 

.+~[++++*=o (?z = 1, 3, 5, . ..) (3.6) 

Thus for the sharp-ended cracks we have the system (3.5) and (3.6). The minimum 

number of nonzero coefficients c, (n = 1, 3, 5 , . ..) sufficient for constructing the 

profile of a sharp-ended crack is four, i.e. cl, cs, cs’ and c,. The latter can be obtained 

from (3.5) and (3.6) by setting-c, = c, = . . . = 0 

- 3:.c, + 5?5 - Tc, = 0 * 
1 (3.7) 

v+(1,$+ ($f+ +~+,$~:~~~++_o 

This system of equations has the following unique solution 

Cl = 35p, c$. = 21p, cg = 7 P, CT = P = - xv (64 h + 70x)-l (3.8) 

In this case the solution of the sharp-ended crack is obtained in a finite form from 

(2.5)-(2.7) and (3.8). The formula 1.3.2.3.6 in [ll] gives the following expression 
for the sum 

ZJ c, cos n0 = 64 c, co9 6 (3.9) 
@) 

4, Complex potential of thr rxternrl filtration flow, Thefiltra- 
tion flow outside the crack r in a thin layer is described by its complex potential W (2) 

[ 1. 21 in the form 1 '12 rr 

kpo1 
p 2X s 

-1 --'/z I 

Here z is the complex coordinate of the point M (z) belonging to the thin layer E. 
Passing in the integral appearing in (4.1) to the complex argument z = eie we obtain 

w(z)=vb~-~&i $ K (z, 5) 2 r&l (Z” - z-9 dr (4.2) 
IsI= @) 

5 = z/b, K (z, 1) = (z - t-1) (t” - 2;~ + 1)-l, y,, = (-l)‘/*(“-l) 

The contou integral in (4.2) is calculated using the theory of residues [l] 
(4.3) 

w(z)=~-b~-_~(_~)~‘~(n-l)~,(~-l/~l--l)n (;=+; n=i,3,5,...) 

W 

The complex velocity W’ (z) = u - iv at the point M (2) is obtained by differen- 

tiating the complex potential W (2) (4.3) with respect to its argument 2 = 2 + iY 

w’ (2) = v + (4.4) 

(; = z/b; n = 1, 3, 5, . ..) 
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We shall show that for the type 1 cracks (sharp-ended cracks) the complex velocity 

at the crack ends, i.e. when z + f b ( j * f 1) has always a bounded value. Indeed, 
for the type 1 cracks the first equation of (3.5) holds, therefore (4.4) can be represented 
by the following equivalent expression : 

w’ (2) = v + i$2( __1)‘/* W-1) c, cc- 1/p-1 P-f 

(nf 
1/p-1 

(5 = z/b; n = 1, 3, 5, . ..) (4.5) 

The passage to the limit in the right-hand side of (4.4) as 5 -+ + 1 is performed 

by applying the Nospital rule to each term under the summation sign. ‘This gives a 
finite value to the rate of filtration at the points z = & b 

w’ (2 b) = V - $$x (-1)*/z (n-1) nzcn (n = 1, 3, 5, . ..) 
(n) 

The rate of filtration at the upper and the lower crack edges in the middle cross section 

0 is found from (4.4) for 5 = f 0 
w’(*O)=V- gp& (4.7) 

(n) 
The expressions (4.6) and (4.7) can only assume real values, and from this we obtain 
the longitudinal and transverse components of the filtration rate of the external flow at 
the points A, B and 0 (Fig.1) 

(4.8) 

Using (3.8) and (4.8) we obtain the following expressions for the example from Sect. 3 : 

32h + 28% 
UA=UB= 32h+35x '9 r,=vg=O 

32h + 70x 
uo+ = uo- = 32h -/_ 35% VT Eo+ = vo- zzz 0 (‘w 

Here we note that (4.6) is valid for the cracks of type 2 only if the first equation of 

(3.5) holds, otherwise the filtration rate of 
the external flow increases in the neighbor- 
hood of each end of the blunt-ended crack 

g iigiven in Fig.2. 

without bounds. An approximate sketch of 

the streamlines near the cracks of all types 

Fig. 2 - 
6. Approximate throry of de- 

formation of a crack when the 
longitudinal filtration flow 1: 

un#taady. The preliminary solution of the problem for the case of a steady flow 

when ‘5 ---t 00 is assumed known and given in the form of (2.5)-(2.7) obtained from 
(1.9). on the basis of (1.7) we can transform (1.1) as follows: 
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f b4 T) = fj-j II + 0 (F - F,)], F =P(s,z) -P(s, QQ) 

FfJ = P (s, 0) - p b, 4, fo = f b, 0) (5.1) 

from which for 1: + ~a we have 

L-0 = fo (1 - O&J (5.2) 

The relation (5.2) connects the final f, and initial fO profiles of the crack AB. Elimi- 

nating fO from (5.1) and (5-Z) we obtain 

Numerical calculations show that the coefficient of deformation 8 is sufficiently 
small, consequently the basic system of equations (1,3) can be reduced to the folluwing 

functional equations 

(F = P - I’,, G = $2 -,&,.J (5.4) 

The first equation of(5.4) approximates the first equation of (I. 8) with the accuracy of 
up to the terms of the 0 (0) - order. The second equation of (5.4) is obtained by efimi- 
nating the term w from (1.8) and (1.9). Using the substitutions 

F = F (s, T) = F, (0, T)~ G = G (s, T) = G, (0, T) 

s=sin0(-1/sn<8<Y,~),0.=~in~ t-Vsn<~<Vsn;) 

F = F, @, o)f 
f =‘r” P, q, f, 

G,, = G, (0, 01 

= f 08 4 fo = f (0, 0) (53 

we can write (5,4) with 8 and X as the arguments* After some manipulations (5.3) 
reduces to 

and (5.4) is replaced by 

66) 

(5.7) 

where the function f, (0) is known from (2.7). 

The solution of the functional equations (5.7) is sought in the form of trigonometric 
expansions in odd harmonics, using the methods given in Sect. 4, Instead of the expan- 
siou(2.5) we take 

G, (0, z) = 2 g, (7) cos n9 (h = 1, 3, 5, l ..) (5.8) 

Using transformations (2.2), the second equation of (5.7) is represented in the form 

F, (0, z) = - +-zg, (z) sin r&l (n = i, 3, 5, . . .> P+% 

Inserting the function G, (8, T) (5?) and F, (0, z) (5.9) into the first functiunal 
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equation of (5.7) we reduce the problem to an infinite system of the linear differential 
equations for g, (r). Another problem may be posed here that of finding the eigenvalues 
of this system. 

We shall begin the preliminary approximate analysis of (5.7) by considering the solu- 
tion of the steady state problem (2.5)-(2.7) obtained in the form 

Q* P) = -Vvh(3COS0+COS36}=-4ihcOSs0 -l/a~<O<%~ 

p, (0) = -vsin8+1/,vh(3sin8+sin3f3) 
( 

x 
A=3x+8h ! 

f*” = & ~6~3 8 (1 - 3A ~053 8 set ej-1, s = sin 8 (5.10) 

To simplify the analysis we assume that the qua+rrMes x and 2 satisfy the inequality 

3A -g 1 (5.11) 

Then the last equation of (5.10) gives the following approximate expression 

f, = I cog 8, I = Itw(Jx + 8h)p (5.12) 

Obviously, the corresponding case is that of the blunt-ended crack AB. 
In the expansions for G, (5.8) and F, (5.9) we assume the following: 

g, (r) = e-= g,* g, = const (z) 

The first equation of (5.7) leads, after the substitution of (5.8), (5.9), (5.12). to the func- 
tional series 

_&19~~g,[2~sinnB+(n-2)sin(n--2)0+(~+2)sin(~+2)~1+ 
09 

+E&+z~~g,[2sind3+sin(n--2)e+sin(~+2)~1= 
W) 

= 2 ng, sin ne (n = 1, 3, 5, . ..) (5.13) 
(n) 

The latter holds for grand g, # 0 and g, = g, = . . . = 0, therefore the conditions 

of solvability of Eq. (5.13) are 
15% p 

r=x ’ 
5 1s = f ) g, = 3g, (5.14) 

Insertion of the expression for 2 from (5.12) into the second equation of (5.14) gives 

the value J./x = r’/s, therefore we have La = ls/rs. The condition (5.11) holds, con- 
sequently the approximate solution of the problem has a meaning and we obtain the fol- 

lowing expressions for G,and F, when A = 1/S g, : 

G, = 2 A e-n (3 cm 8 + co9 381, G,, = 2A (3 cos 8 + cos 38) 

F, = -Ae-m(3sin8+sin38), FaO= -A(3sinf3+sin38) (5.15) 

From (5.6). (5.12) and (5.15) we obtain the required solution of the problem in the form 

P=P,+F,, Q=Q,-f-G,, s=sin8 (-2/sx<e<y2q 

P, = -vsine+$ 3Xx;-V4h (3sin8+sin38), 
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s-2 *=- 3xy4k t3 cos 8 + cos 38) 

f=lc43s8 l- 
[ 

de (3 sin 6 + Sin 36) 
1+ A8(3sinfI+sin36) 

~~ 1 (5.16) 

The constant A is obtained from the total variation in the pressure drop AP over the 
whole crack length AB over the time by which the steady state is established, i. e. over 
the variation of r from r = 0 to ‘c = 00. The present value of the total pressure drop 

between the points A and B(Fig. 3) is written in the form 

AP = AP, + Ue-” 

From (5.16) we obtain 
(4A = AP, - AP,) (5.17) 

co (s) .= -$P& = $Po(3xy4h - 2A 0-m 
) 

(3 cos 9 + cos 38) 

s = sin8 (--‘/a fi < 0 < lfa n) (5.18) 

Inserting the expression for the discharge function CO (5.18) into the expression (4.1)- 

-(4.3) for w (2) gives 

w(z)=Vbg-9( ’ 
3xX+& 

-22e-m [3(5-m)- 
) 

-k--vsl-1)“1 (I, = a/b) (5.19) 

The complex potential w (z) (5.9) describes the external velocity field and the argu- 

ment ‘F is not given explicitly in the expression for 
w (. ..) . Obviously the given filtration field tends 

asymptotically to a steady state as z + 00. 

Figs.4 and 5 depict the initial (s,), the present 

% 
__---------_----- (S) and the final (S,) crack profile and the corre- 

spdnding plots (R,, R, R,) of the pressure along 
the crack ABi Fig. 5 shows clearly that the initial 

asymmetry of the crack AB vanishes asymptotical- 
ly and the crack profile becomes symmetric (ellip- 

y”O 77 tical) with respect to the middle cross section when 

Fig. 3 
r -+ 00, Since at the same time the slope of the 
pressure curve (R) decreases, the left-hand side 

of the crack is found to be under a smaller load than the right-hand side. The hydrody- 
namic pressure in the right half of the crack increases with time, hence the profile of 

the right half of the crack OB moves upward with time,while the profile of the left 

half of the crack A0 is displaced downwards relative to the steady state (elliptical) 
crack profile. In.this manner, the initial (pear-shaped) crack profile degenerates into 
the final (elliptical) profile. Obviously, all this describes correctly, from the qualitative 

point of view, the process of deformation of the crack profile during the filtration of the 
layer liquid along the crack. 

The quantitative detailed analysis of the crack deformation depending on the filtra- 
tion effects and based on the theory proposed here, is beyond the scope of this paper . 
The behavior of the sharp-ended cracks can be investigated in the same manner. This 
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will however require more complicated initial expressions (5.10) and (5.12). Otherwise 

Fig. 4 Fig. 5 

the approach employed in obtaining the solution to the problem here remains valid. 
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